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Abstract
The significance of proposals that can predict different results for standard
and Bohmian quantum mechanics have been the subject of many discussions
over the years. Here, we suggest a particular experiment (a two double-slit
experiment) and a special detection process, that we call selective detection,
to distinguish between the two theories. Using our suggested experiment, it is
shown that the two theories predict different observable results at the individual
level. However, at the ensemble level, their predictions are the same for a
geometrically symmetric arrangement. On the other hand, we have shown
that at the statistical level, if we use our selective detection, then either the
predictions of the two theories differ or, where standard quantum mechanics is
silent or vague, Bohmian quantum mechanics makes explicit predictions.

PACS number: 0365

1. Introduction

According to standard quantum mechanics (SQM), the complete description of a system of
particles is provided by its wavefunction. The empirical predictions of SQM follow from a
mathematical formalism which makes no use of the assumption that matter consists of particles
pursuing definite tracks in spacetime. It follows that the results of the experiments designed to
test the predictions of the theory do not permit us to infer any statement regarding the particle—
not even its independent existence. However, in Bohmian quantum mechanics (BQM), the
additional element that is introduced apart from the wavefunction is the particle position,
conceived in the classical sense as pursuing a definite continuous track in spacetime [1–3].
The detailed predictions made by this causal interpretation explain how the results of quantum
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experiments come about but it is claimed that they are not tested by them. In fact when Bohm [1]
presented his theory in 1952, experiments could be performed with an almost continuous
beam of particles, but not with individual particles. Thus, Bohm constructed his theory in
such a fashion that it would be impossible to distinguish observable predictions of his theory
from SQM. This can be seen from Bell’s comment about empirical equivalence of the two
theories when he said ‘It (the de Broglie–Bohm version of non-relativistic quantum mechanics)
is experimentally equivalent to the usual version insofar as the latter is unambiguous’ [4].
However, could it be that a certain class of phenomena might correspond to a well posed
problem in one theory but to none in the other? Or might the additional particles and definite
trajectories of Bohm’s theory lead to a prediction of an observable where SQM would just have
no definite prediction to make? To draw discrepancy from experiments involving the particle
track, we have to argue in such a way that the observable predictions of the modified theory
are in some way functions of the trajectory assumption. The question raised here is whether
the de Broglie–Bohm particle law of motion can be made relevant to experiment. At first, it
seems that definition of time spent by a particle within a classically forbidden barrier provides
good evidence for the preference of BQM. However, there are difficult technical questions,
both theoretically and experimentally, that are still unsolved about this tunnelling time [3]. A
recent work indicates that it is not practically feasible to use the tunnelling effect to distinguish
between the two theories [5].

On the other hand, Englert et al [6] and Scully [7] have claimed that in some cases Bohm’s
approach gives results that disagree with those obtained from SQM and, in consequence, with
experiment. Again, at first Dewdney et al [8] and then Hiley et al [9] showed that the specific
objections raised by Englert and Scully cannot be sustained. Furthermore, Hiley believes that
no experiment can decide between the standard interpretation and Bohm’s interpretation. How-
ever, Vigier [10], in his recent work, has given a brief list of new experiments which suggest
that the U(1) invariant massless photon assumed properties of light within the standard inter-
pretation are too restrictive and that the O(3) invariant massive photon causal de Broglie–Bohm
interpretation of quantum mechanics is now supported by experiments. Furthermore, in some
of the recent investigations, some feasible experiments have been suggested to distinguish be-
tween SQM and BQM [11,12]. In one work, Ghose indicated that although BQM is equivalent
to SQM when averages of dynamical variables are taken over a Gibbs ensemble of Bohmian
trajectories, the equivalence breaks down for ensembles built over clearly separated short inter-
vals of time in specially entangled two-bosonic particle systems [11]. Another one [12] is an
extention of Ghose’s work to show disagreement between SQM and BQM in a two-particle sys-
tem with an unentangled wavefunction, particularly at the statistical level1. Further discussion
of this subject can be found in [13,14,16]. In that experiment, to obtain a different interference
pattern from SQM, we must deviate the source from its geometrically symmetric location.

In this investigation, we are offering a new thought experiment which can decide between
SQM and BQM. Here, the deviation of the source from its geometrically symmetric location
is not necessary and we have used a system consisting of two correlated particles with an
entangled wavefunction.

In the following section, we introduce a two double-slit experimental set-up. In section 3,
Bohm’s interpretation is used to find some observable results about our suggested experiment.
Predictions of the standard interpretation and their comparison with Bohmian predictions are
examined in section 4. In section 5 we have used selective detection and have compared SQM

1 To clarify our discussion it is worth noting that in this paper we have used the following definitions:
(i) By statistical level we mean our final interference pattern.
(ii) The individual level refers to our experiment with a pair of particles which are emitted in clearly separated short
intervals of time.
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Figure 1. A two double-slit experiment configuration. Two identical particles with zero total
momentum are emitted from the source S and then they pass through slits A and B′ or B and A′.
Finally, they are detected on screens S1 and S2, simultaneously. It is necessary to note that dotted
lines are not real trajectories.

and BQM with our thought experiment at the ensemble level of particles, and we state our
conclusion in section 6.

2. Two double-slit experiment presentation

To distinguish between SQM and BQM we consider the following experimental set-up. A pair
of identical non-relativistic particles with total momentum zero, labelled by 1 and 2, originate
from a point source S that is placed exactly in the middle of a two double-slit screen as shown
in figure 1. We assume that the intensity of the beam is so low that during any individual
experiment we have only a single pair of particles passing through the slits and the detectors
have the opportunity to relate to each other to perform selective detection process. In addition,
we assume that the detection screens S1 and S2 register only those pairs of particles that reach
the two screens simultaneously. Thus, we are sure that the registration of single particles is
eliminated from final interference pattern. The detection processes at the screens S1 and S2

may be nontrivial but they play no causal role in the basic phenomenon of the interference of
particles waves [2]. In the two-dimensional system of coordinates (x, y) whose origin S is
shown, the centres of the slits lie at the points (±d,±Y ). The wave incident on the slits will
be taken as a plane of the form

ψin(x1, y1; x2, y2; t) = aei[kx(x1−x2)+ky(y1−y2)]e−iEt/h̄ (1)

where a is a constant and E = E1 + E2 = h̄2(k2
x + k2

y)/m is the total energy of the system of
two particles. The plane wave assumption arises from the large distance between the source
S and the double-slit screens. To avoid the mathematical complexity of Fresnel diffraction at
a sharp-edge slit, we suppose the slits have soft edges that generate waves having identical
Gaussian profiles in the y-direction while the plane wave in the x-direction is unaffected [2].
The instant at which the packets are formed will be taken as our zero of time. Therefore, the
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four waves emerging from the slits A, B, A′ and B′ are initially

ψA,B(x, y) = a(2πσ 2
0 )

−1/4e−(±y−Y )2/4σ 2
0 ei[kx(x−d)+ky(±y−Y )] (2)

ψA′,B ′(x, y) = a(2πσ 2
0 )

−1/4e−(±y+Y )2/4σ 2
0 ei[−kx(x+d)+ky(±y+Y )] (3)

where σ0 is the half-width of each slit. At time t the general total wavefunction at a space
point (x, y) of our considered system for bosonic and fermionic particles is given by

ψ(x1, y1; x2, y2; t) = N [ψA(x1, y1, t)ψB ′(x2, y2, t)± ψA(x2, y2, t)ψB ′(x1, y1, t)

+ψB(x1, y1, t)ψA′(x2, y2, t)± ψA′(x1, y1, t)ψB(x2, y2, t)] (4)

with

ψA,B(x, y, t) = a(2πσ 2
t )

−1/4e−(±y−Y−uy t)2/4σ0σt ei[kx(x−d)+ky(±y−Y−uy t/2)−Ext/h̄] (5)

ψA′,B ′(x, y, t) = a(2πσ 2
t )

−1/4e−(±y−Y−uy t)2/4σ0σt ei[−kx(x+d)+ky(±y−Y−uy t/2)−Ext/h̄] (6)

where N is a reparametrization constant whose value is unimportant in this paper and

σt = σ0

(
1 +

ih̄t

2mσ 2
0

)
(7)

uy = h̄ky
m

Ex = 1

2
mu2

x (8)

where ux and uy , according to BQM, are initial group velocities corresponding to each particle
in the x- and y-directions respectively. In addition, the upper and lower signs in the total
wavefunction refer to symmetric and anti-symmetric wavefunctions under the exchange of
particle 1 and particle 2, corresponding to bosonic and fermionic properties respectively, while
in equations (5) and (6) they refer to upper and lower slits, respectively. In the next section,
we have used BQM to derive some results of this experiment.

3. Bohmian predictions about the suggested experiment

In BQM, the complete description of a system is given by specifying the position of the particles
in addition to their wavefunction, which has the role of guiding the particles according to the
following guidance condition for n particles, with masses m1,m2, . . . , mn:

�̇xi(�x, t) = 1

mi
�∇iS(�x, t) = h̄

mi
Im

( �∇iψ(�x, t)
ψ(�x, t)

)
(9)

where �x = ( �x1, �x2, . . . , �xn) and

ψ( �x1, �x2, . . . , �xn; t) = R( �x1, �x2, . . . , �xn; t)eiS( �x1, �x2,..., �xn;t)/h̄ (10)

is a solution of Schrödinger’s wave equation. Thus, instead of SQM with indistinguishable
particles, in BQM the path of particles or their individual histories distinguishes them and
each one of them can be studied separately [2]. In addition, Belousek [15], in his recent
work, concluded that the problem of Bohmian mechanical particles being statistically (in-)
distinguishable is a matter of theory choice underdetermined by logic and experiment, and that
such particles are in any case physically distinguishable. For our considered experiment, the
speed of the particles 1 and 2 in the y-direction is given, respectively, by

ẏ1(x1, y1; x2, y2; t) = h̄

m
Im
∂y1ψ(x1, y1; x2, y2; t)
ψ(x1, y1; x2, y2; t) (11)

ẏ2(x1, y1; x2, y2; t) = h̄

m
Im
∂y2ψ(x1, y1; x2, y2; t)
ψ(x1, y1; x2, y2; t) . (12)
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With the replacement of ψ(x1, y1; x2, y2; t) from (4), (5) and (6) we have

ẏ1 = N h̄
m

Im

{
1

ψ
[[−2(y1 − Y − uyt)/4σ0σt + iky]ψA1ψB ′

2

±[−2(y1 + Y + uyt)/4σ0σt − iky]ψA2ψB ′
1

+[−2(y1 + Y + uyt)/4σ0σt − iky]ψB1ψA′
2

±[−2(y1 − Y − uyt)/4σ0σt + iky]ψB2ψA′
1
]

}
(13)

ẏ2 = N h̄
m

Im

{
1

ψ
[[−2(y2 + Y + uyt)/4σ0σt − iky]ψA1ψB ′

2

±[−2(y2 − Y − uyt)/4σ0σt + iky]ψA2ψB ′
1

+[−2(y2 − Y − uyt)/4σ0σt + iky]ψB1ψA′
2

±[−2(y2 + Y + uyt)/4σ0σt − iky]ψB2ψA′
1
]

}
(14)

where, for example, the short notation ψA(x1, y1, t) = ψA1 is used. Furthermore, from (5)
and (6) it is clear that

ψA(x1, y1, t) = ψB(x1,−y1, t)

ψA(x2, y2, t) = ψB(x2,−y2, t)

ψB ′(x1, y1, t) = ψA′(x1,−y1, t)

ψB ′(x2, y2, t) = ψA′(x2,−y2, t)

(15)

which indicates the reflection symmetry of ψ(x1, y1; x2, y2; t) with respect to the x-axis.
Utilizing this symmetry in (13) and (14), we can see that

ẏ1(x1, y1; x2, y2; t) = −ẏ1(x1,−y1; x2,−y2; t)
ẏ2(x1, y1; x2, y2; t) = −ẏ2(x1,−y1; x2,−y2; t)

(16)

which are valid for both bosonic and fermionic particles. Relations (16) show that if
y1(t) = y2(t) = 0, then the speed of each particle in the y-direction is zero along the symmetry
axis x. This means that none of the particles can cross the x-axis nor are they tangent to it,
provided both of them are simultaneously on this axis. Similar conclusions can be found in
some other works (for example [8, 9, 11–13]). It can be seen that there is the same symmetry
of the velocity about the x-axis as for an ordinary double-slit experiment [2].

If we consider y = (y1 + y2)/2 to be the vertical coordinate of the centre of mass of the
two particles, then we can write

ẏ = (ẏ1 + ẏ2)/2

= −N h̄
2m

Im
1

ψ

(
y1 + y2

2σ0σt

)
(ψA1ψB ′

1
± ψA2ψB ′

1
+ ψB1ψA′

2
± ψB2ψA′

1
)

= (h̄/2mσ 2
0 )

2

1 + (h̄/2mσ 2
0 )

2t2
yt. (17)

Solving the equation of motion (17), we obtain the path of the y coordinate of the centre of
mass

y = y0

√
1 + (h̄/2mσ 2

0 )
2t2. (18)

If at t = 0 the centre of mass of the two particles is exactly on the x-axis, then y0 = 0, and
the centre of mass of the particles will always remain on the x-axis. Thus, according to BQM,
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the two particles will be detected at points symmetric with respect to the x-axis, as shown in
figure 1.

It seems that calculation of quantum potential can give us another perspective of this
experiment. As we know, to see the connection between the wave and particle, the Schrödinger
equation can be rewritten in the form of a generalized Hamilton–Jacobi equation that has the
form of the classical equation, apart from the extra term

Q(�x, t) = − h̄
2

2m

∇2R(�x, t)
R(�x, t) (19)

where function Q has been called the quantum potential [2]. However, it is clear that the
calculation and analysis ofQ, by using our total wavefunction (4), is not very simple. On the
other hand, we can use the form of Newton’s second law, in which the particle is subject to a
quantum force (−�∇Q) in addition to the classical force (−�∇V ) [2], namely

�F = −�∇(Q + V ). (20)

Now, if we utilize the equation of motion of the centre of mass y-coordinate (18) and
equation (20), we shall obtain the quantum potential for the centre of mass motion (Qcm).
Thus, we can write

−∂Q
∂x

= mẍ = 0 (21)

−∂Q
∂y

= mÿ = my0(h̄/2mσ 2
0 )

2

(1 + (h̄t/2mσ 2
0 )

2)3/2
= my

4
0

y3

(
h̄

2mσ 2
0

)2

(22)

where the result of equation (21) is clearly due to motion of the plane wave in the x-direction.
In addition, we assume that ∇V = 0 in our experiment. Thus, our effective quantum potential
is only a function of the y-variable and it has the form

Q = my
4
0

2y2

(
h̄

2mσ 2
0

)2

= 1

2
my2

0

(h̄/2mσ 2
0 )

2

1 + (h̄t/2mσ 2
0 )

2
. (23)

If y0 = 0, the quantum potential for the centre of mass of two particles is zero at all times and
it remains on the x-axis. However, if y0 �= 0, then the centre of mass cannot touch or cross the
x-axis. These conclusions are consistent with our earlier result (equation (18)).

4. SQM forecast and its comparison with BQM

So far, we have been studying the results obtained from BQM at the individual level, but it is
well known from SQM that the probability of simultaneous detection of two particles at yM
and yN , at the screens S1 and S2, is given by

P12(yM, yN) =
∫ yM+	

yM

dy1

∫ yN+	

yN

dy2 |ψ(x1, y1; x2, y2; t)|2. (24)

The parameter", which is taken to be small, is a measure of the size of the detectors. It is clear
that the probabilistic prediction of SQM is in disagreement with the symmetrical prediction
of BQM, because SQM predicts that probability of asymmetrical detection at the individual
level of a pair of particles can be different from zero, in opposition to BQM’s symmetrical
predictions. In addition, based on SQM’s prediction, the probability of finding two particles
on one side of the x-axis can be nonzero, while we have shown that BQM’s prediction forbids
such events in our experiment. In other words, its probability must be exactly zero. Thus, if
we provide necessary arrangements to perform this experiment, we must abandon one of the
two theories or even both as a complete description of the universe.
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Now the question arises as to whether this difference persists if we deal with an ensemble
of pairs of particles. To answer this question, we consider an ensemble of pairs of particles
that have arrived at the detection screens S1 and S2 at different times ti . It is well known that,
in order to ensure the compatibility between SQM and BQM for an ensemble of particles,
Bohm added a further postulate to his three basic and consistent postulates [1, 2]. Based on
this further postulate, the probability that a particle in the ensemble lies between �x and �x + d �x
at time t is given by

P(�x, t) = R2(�x, t). (25)

Thus, using BQM, the probability of simultaneous detection for all pairs of particles of the
ensemble arriving at the two screens at different instants of time ti , with y0 = 0, is

P12 = lim
N→∞

N∑
i=1

R2(y1(ti),−y1(ti), ti) ≡
∫ +∞

−∞
dy1

∫ +∞

−∞
dy2 |ψ(y1, y2, t)|2 = 1 (26)

where every term in the sum shows only one pair arriving on the screen S2 at the symmetrical
points about the x-axis at time ti with the intensity of R2. If all times ti in the sum are taken
to be t , the summation on i can be converted to an integral over all paths that cross the screen
S2 at that time so that we obtain an interference pattern. Then, one can consider the joint
probability of detecting two particles at two arbitrary points yM and yN which can belong to
different pairs

P12(yM, yN) =
∫ yM+"

yM

dy1

∫ yN+"

yN

dy2 |ψ(y1, y2, t)|2 (27)

where every term in the sum shows only one pair arriving on the screens S1 and S2 at the point
(y1(ti),−y1(ti)), at time ti , weighted by the corresponding density R2. If all times ti are taken
to be t , then the summation on i can be changed to an integral over all paths that cross the
screens S1 and S2 at that time. Now, we can consider the joint probability of two points yM
and yN on the two screens at time t that are not symmetric about the x-axis, but we know that
they are not detected simultaneously. Then, one can obtain the probability of detecting two
particles at two arbitrary points yM and yN

P12(yM, yN) =
∫ yM+"

yM

dy1

∫ yN+"

yN

dy2 |ψ(y1, y2, t)|2 (28)

which is similar to the prediction of SQM (equation (24)) but obtained in a Bohmian
way [11]. Thus, it appears that for a geometrically symmetric arrangement the possibility of
distinguishing the two theories at the statistical level is impossible, as was expected [1–3,9,17].

5. Selective detection and comparison of SQM with BQM at the statistical level

In the previous section, we have shown that SQM and BQM have different predictions for
our suggested experiment, at the individual level. Since SQM talks about individual events in
probabilistic terms, the existence of different predictions by the two theories at the individual
level is not a strange result. On the other hand, we have seen that the two theories, for a
geometrically symmetric arrangement, are consistent at the ensemble level. Here, one can
ask whether the individual level is the only area to distinguish between the two theories and
whether the disagreement between them cannot appear at the ensemble level. In this section,
we answer this question in the negative, and we shall provide conditions under which SQM
can be interpreted as a vague theory at the ensemble level.
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5.1. The case where y0 is exactly zero

We have seen that the assumption of y0 = 0 is not in contradiction with the statistical results of
SQM and, in consequence, with experiment. Thus, we can assume that initially each particle
in the source is statistically distributed according to the absolute square of the wavefunction,
but this distribution is completely symmetric so that the y-coordinate of the centre of mass is
on the x-axis. If we can prepare such a special source with two correlated particles, we can try
to perform our experiment in the following fashion: particles emitted from the source S into
the right-hand side of the experimental set-up can pass through slits A or B. Since we have
assumed that the total momentum of the pair of particles is zero, if one of the particles goes
through the slit A for instance, the other particle must go through the slit B′ on the left-hand
side of the experimental set-up. Based on BQM and using equation (16), we infer that the
particle passing through the slit A must be detected on the upper half plane of the x-axis on
the screen S1. The same thing must occur for the other particle that passes through B′, but in
the lower half plane of the x-axis on the S2 screen. Using this prediction, we assume that only
those particles arriving at S2 for which there is a simultaneous detection of the other particle at
the upper side on S1 are recorded. We call this special detection, in which some of the selected
particles are recorded, a selective detection. Thus, based on the prediction power of BQM, we
will record two particles symmetric with respect to the x-axis for each emitted pair of particles.
If we wait to record an ensemble of particles, we shall see an interference pattern of particles
on the lower half plane of the S2 screen. On the other hand, based on SQM, the probability of
finding a particle at any point on the S2 screen, even at the upper side, is nonzero and there is
no compulsion to detect pairs of particles symmetrically on the two sides of the x-axis, as can
be seen from equation (24) and is depicted in figure 1. Therefore, if we accept that SQM is still
efficient and unambiguous for the selective detection, the interference pattern will be seen on
the whole screen S2, particularly at the upper side of it, at the ensemble level. Consequently,
we shall have observable results to distinguish the two theories, SQM and BQM.

5.2. The case where y0 is statistically distributed

One can argue that y0 cannot have a well defined position and it must be distributed according
to Born’s principle. However, we shall show that this objection cannot alter our obtained
results. Assume that 〈y0〉 = 0 but 	y0 �= 0. If we provide conditions in which 	y0 is very
small and h̄t/2mσ 2

0 � 1, we can still detect particles symmetrically with respect to the x-axis,
with a good approximation. To obtain symmetrical detection about the x-axis with reasonable
approximation, the centre of mass variation from the x-axis must be smaller than the distance
between any two neighboring maxima, that is

y � λD

2Y
� πh̄t
Ym

(29)

where λ is the de Broglie wavelength. For conditions h̄t/2mσ 2
0 � 1, Y ∼ σ0 and using

equation (18), one can obtain

y0 � πh̄t

Ym
∼ σ0. (30)

Therefore, if we use a source with 	y0 � σ0, we shall obtain y � y0 � σ0 for each individual
observation, and our symmetrical detection can be maintained with a good approximation. It
is evident that, if one considers 	y0 ∼ σ0, as was done in [16], the incompatibility between the
two theories will disappear. However, we believe that, instead of the usual one-particle two-
slit experiment with 	y0 ∼ σ0, our correlated two-particle system provides a new situation in
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which we can adjust y0 independent of σ0, so that

y0 = 1
2 (y1 + y2)t=0 � σ0. (31)

Although it is obvious that (	y1)t=0 = (	y2)t=0 ∼ σ0, position correlation between the
two entangled particles means that they always satisfy equation (31). Furthermore, if it is
assumed that y0 is statistically distributed, another problem can be raised, which is mentioned
by Marchildon [16]. We have shown that, if both particles are simultaneously on the x-axis,
both velocities in the y-direction vanish, and neither particle could cross or be tangent to the
x-axis. However, under the 	y0 �= 0 condition, pairs of particles cannot be simultaneously
on the x-axis and we do not have the aforementioned constraint on the motion of particles
(relations (16)). However, using our selective detection, we can still obtain our last result,
because the centres of mass of the two particles are on the x-axis to a reasonable approximation.
It is clear that, under such a condition, one cannot claim that the particle detected at the upper
(lower) side must have passed through upper (lower) slit, in spite of the y0 = 0 condition.

In conclusion, to confirm these results, it is worth noting that Durr et al [17] argue that
the selective detection can alter the statistical predictions of the two theories: ‘note that by
selectively forgetting results we can dramatically alter the statistics of those that we have
not forgotten. This is a striking illustration of the way in which Bohmian mechanics does not
merely agree with the quantum formalism, but, eliminating ambiguities, clarifies, and sharpens
it’. Elsewhere [13], we have utilized another kind of selective detection by which we could
alter the statistical prediction of SQM, using BQM for an interference device that contains two
unentangled particles.

6. Conclusion

In this investigation, we have suggested an experiment to distinguish between SQM and BQM.
In fact, we believe that some particular experiments that for one reason or another have not
yet been performed can decide between them. Thus, it has been shown that a two double-slit
experimental set-up, along with a source of two identical non-relativistic particles with total
momentum of zero, emitted at suitable time intervals, has the following characteristics:

(1) The suggested experiment will yield different observable predictions for SQM and BQM,
at the individual level.

(2) The two theories yield the same interference pattern at the ensemble level without using
a selective detection, as is expected.

(3) Since in BQM the particles are distinguishable and their past history are known, using
selective detection, it has been shown that either the two theories will predict different
results at the statistical level, or that BQM has more predictive power than SQM. It is
shown that selective detection can be considered as a tool for arriving at a new realm in
which trajectory interpretation is sharply formulated, while the standard interpretation is
ambiguous and silent even at the ensemble level.

Therefore, it seems possible to distinguish between the two theories and to see whether
BQM is a worthy successor to SQM.
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